网站首页  学院概况  人才培养  科学研究  学科建设  党建园地  学生工作  校友工作 
文章内容页
当前位置: 网站首页>>jxjc>>正文
高康平
2026-01-28 08:13     (阅读量:)

姓名

高康平

出生年月

1994年12月

性别

学历学位

博士研究生

职称

讲师

导师类型

专硕导师

联系电话


所属院系

基础部

Email

Jxx@email.tjut.edu.cn

人才称号

学术兼职

担任Tunnelling and Underground Space Technology、Rock Mechanics and Rock Engineering、Energy、Measurement等期刊审稿人。

招生专业


专业型:085501/机械工程


研究方向

特种作业机器人技术,模式识别,数据挖掘

一、科研项目:近期,限10项

1. 天津市自然科学基金青年项目,2024.10-2026.9,主持

2.制造过程测试技术教育部重点实验室开放课题,2025.6-2027.6,主持

3.煤炭精细勘探与智能开发全国重点实验室开放课题,2026.1-2027.12,主持

4. 横向项目,2026.6-2026.12,主持

二、代表性论著:近期代表作,限10篇(部)

(1)K.P. Gao*,Y.L. Wang, X.X. Xu, X.K. Ma.Rock UCS characterization based on multisource dynamic information: Insights from numerical simulation to constant-parameter drilling experiments.Rock Mechanics and Rock Engineering.2025, 58: 12049-12068.(SCI一区,IF:6.6).

(2)K.P. Gao*,X.X. Xu, S.J. Jiao.Prediction and visualization analysis of drilling energy consumption based on mechanism and data hybrid drive. Energy. 2022,261(15):1252227.(SCI一区,IF: 9.4).

(3)K.P. Gao, S.L. Liu, Q. Zhang*.A multi-stage learning method for excavation torque prediction of TBM based on CEEMD-EWT-BiLSTM hybrid network model.Measurement.2025, 247: 116766.(SCI二区,IF: 5.6).

(4)K.P. Gao*, Q. Zhang, S.J. Jiao. Energy measurement and prediction method of rig-operator system based on digital drilling technology.Measurement.2025, 239: 115468.(SCI二区,IF: 5.6).

(5)K.P. Gao*, X.X. Xu, S.J. Jiao. Intelligent real-time perception method for rock strength based on vibration and power fusion characteristics. Measurement. 2024, 226:114116.(SCI二区,IF: 5.6).

(6)K.P. Gao*, X.X. Xu, S.J. Jiao.Measurement and perception of the rock strength by energy parameters during the drilling operation.Measurement.2024, 227, 114268.(SCI二区,IF: 5.6).

(7)K.P. Gao*,Z.Y. Huang, C.T. Lv. Multi-scale prediction of remaining useful life of lithium-ion batteries based on ensemble empirical mode decomposition. Journal of energy storage.2024, 99: 113372.(SCI二区,IF:9.8).

(8)K.P. Gao*, X.X. Xu, S.J. Jiao. Research on rock mass strength parameter perception based on multi-feature fusion of vibration response while drilling. Measurement. 2023, 216:112942.(SCI二区,IF: 5.6).

(9)K.P. Gao,X.X. Xu, S.J. Jiao. Measurement and prediction of wear volume of the tool in nonlinear degradation process based on multi-sensor information fusion. Engineering Failure Analysis.2022,136: 106164.(SCI二区,IF: 5.7).

(10)K.P. Gao, X.X. Xu, J.B. Li, S.J. Jiao, N. Shi. Weak fault feature extraction for polycrystalline diamond compact bit based on ensemble empirical mode decomposition and adaptive stochastic resonance. Measurement. 2021,178: 109304.(SCI二区,IF: 5.6).

三、授权专利:

四、荣誉奖励:

 

关闭窗口

天津理工大学机械工程学院  地址:天津市西青区宾水西道391号15号楼
电话:022-60214133  邮编:300384